Composite Hydrogels Laden with Crystalline Active Pharmaceutical Ingredients of Controlled Size and Loading
نویسندگان
چکیده
Efficient control of crystallization and crystal properties still represents a bottleneck in the manufacturing of crystalline materials ranging from pigments to semiconductor particles. In the case of pharmaceutical drug manufacture, current methods for controlling critical crystal properties such as size and morphology that dictates the product’s efficacy are inefficient and often lead to the generation of undesirable solid states such as metastable polymorphs or amorphous forms. In this work, we propose an approach for producing crystals of a poorly water-soluble pharmaceutical compound embedded in a polymer matrix. Taking advantage of the composite hydrogel structure, we control the crystallization of the active pharmaceutical ingredient (API), within the composite hydrogel, generating crystalline API of controlled crystal size and loading. The composite hydrogels initially consist of organic phase droplets, acting as crystallization reactors, embedded in an elastic hydrogel matrix. By controlled evaporation of this composite material, crystals of controlled size (330 nm to 420 μm) and loading (up to 85%w/w) are produced. Through the interplay of elasticity and confinement, composite hydrogels control the crystal size and morphology via a two-step mechanism. First, the elastic matrix counteracts evaporation-induced coalescence of the emulsion droplets, keeping droplets isolated. Second, a confinement-induced elastic energy barrier, limits the growth of crystals beyond the size designated by the droplets. The proposed approach can be applied to production of a wide range of crystalline materials.
منابع مشابه
Core-Shell Composite Hydrogels for Controlled Nanocrystal Formation and Release of Hydrophobic Active Pharmaceutical Ingredients.
Although roughly 40% of pharmaceuticals being developed are poorly water soluble, this class of drugs lacks a formulation strategy capable of producing high loads, fast dissolution kinetics, and low energy input. In this work, a novel bottom-up approach is developed for producing and formulating nanocrystals of poorly water-soluble active pharmaceutical ingredients (APIs) using core-shell compo...
متن کاملOphthalmic drug delivery through contact lenses.
PURPOSE Currently available ophthalmic drug delivery systems are inefficient and may lead to side effects. To increase efficiency and reduce side effects, the authors propose disposable particle-laden soft contact lenses for ophthalmic drug delivery. METHODS The essential idea is to encapsulate the ophthalmic drug formulations in nanoparticles and to disperse these drug-laden particles in the...
متن کاملSelf-assembled sorbitol-derived supramolecular hydrogels for the controlled encapsulation and release of active pharmaceutical ingredients.
A simple supramolecular hydrogel based on 1,3:2,4-di(4-acylhydrazide)benzylidene sorbitol (DBS-CONHNH2), is able to extract acid-functionalised anti-inflammatory drugs via directed interactions with the self-assembled gel nanofibres. Two-component hydrogel-drug hybrid materials can be easily formed by mixing and exhibit pH-controlled drug release.
متن کاملSynthesis of pH Sensitive Hydrogels Based on Poly Vinyl Alcohol and Poly Acrylic Acid
In this research, hydrogels based on poly vinyl alcohol and poly acrylic acid blend were prepared which were cross-linked by applied thermal conditions. Afterward, effects of time and heating on water uptake were investigated. The highest water uptake value exhibited by the sample that was heated for 20 min. at 110 ºC was about 2129% after 4 days at equilibrium state. Hydrogels exhibited p...
متن کاملLoading into and electro-stimulated release of peptides and proteins from chondroitin 4-sulphate hydrogels.
Chondroitin 4-sulphate (CS) hydrogels were examined as potential matrices for the electro-controlled delivery of peptides and proteins. A CS hydrogel, cross-linked with ethylene glycol diglycidyl ether, and with a swelling ratio of 20, was used to study the influence of molecular size and shape of guest molecules on loading and release rates. Three positively charged molecules of different mole...
متن کامل